

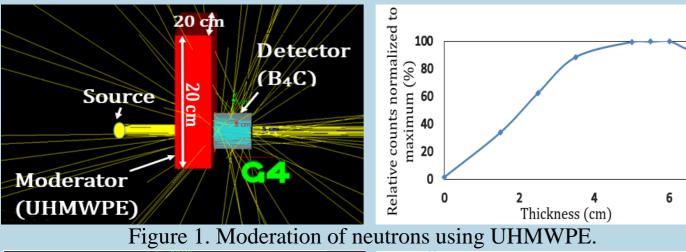
Characterization of Scintillation Detectors for Neutrons and γ-rays

Vivek Anand*, Bhavika, Virender Ranga, Kalyani Thakur, Anil Kumar Gourishetty

Radiation Detectors and Spectroscopy Laboratory,

Dept. of Physics, Indian Institute of Technology, Roorkee

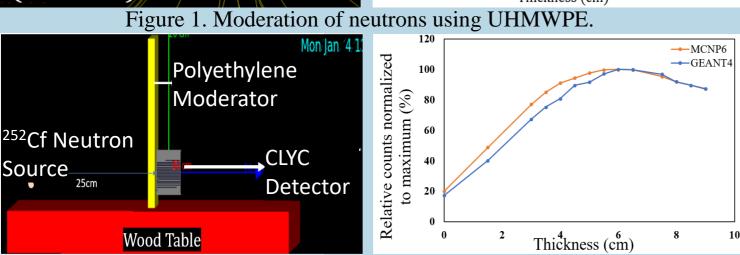
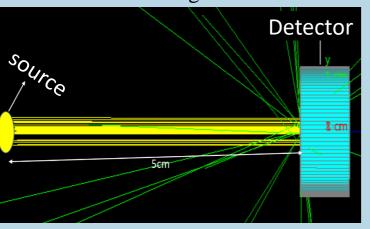
*Email: vivek_a@ph.iitr.ac.in

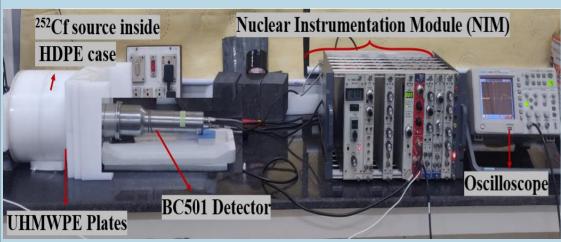

RDS Lab website: https://rdslab.iitr.ac.in/

Neutron Shielding Materials and Detectors

- Shielding materials: HDPE, UHMWPE, Borated rubber sheets
- Applications: Nuclear reactor safety, Medical imaging
- Neutron detectors: BC501A, B₄C, LaCl₃, LaBr₃, GGAG, CLYC, LiI, GSO, CWO

Geant4 Simulations for Thickness Optimization:

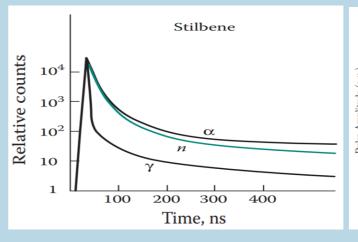




Figure 2. Moderation of neutrons using PE.

Detector	Optimum	Efficiency
	thickness	(%)
	(mm)	
GAGG	0.5	99.73
CLYC	20	98.49
LaBr ₃	250	68.01
LiI	50	98.22
CWO	2.5	98.63
GSO	0.1	99.74
B ₄ C	1	99.70

Figure 3. Optimizing thickness of different detectors for maximum thermal neutron detection efficiency.

Experimental Setup:



Thickness (cm)	Counts
0	53429
2.5	51548
5	49030
7.5	46825
10	45255
12.5	42744

Figure 4. Exp. setup for moderation of fast neutrons using UHMWPE plates.

Pulse Shape Discrimination (PSD)

- PSD is used to discriminate among different kinds of radiation.
- PSD exploits difference in shape of pulse generated by the detector for different radiation.
- Charge Integration method was used for PSD.
- CAEN DT5751 desktop digitizer with 1 GS/s was used for digital pulse processing.
- 252 Cf neutron source was used for n γ discrimination.
- Internal α -activity of LaBr₃:Ce was used for α - γ discrimination.

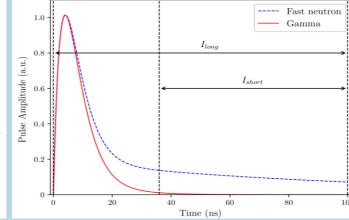


Figure 5. Pulse shapes of different radiations in organic scintillator, Stilbene.

Figure 6. Long and short gate for Charge Integration method.

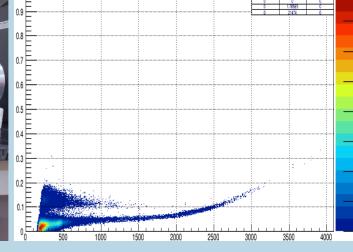


Figure 7. n - γ discrimination in BC501A detector using digitizer.

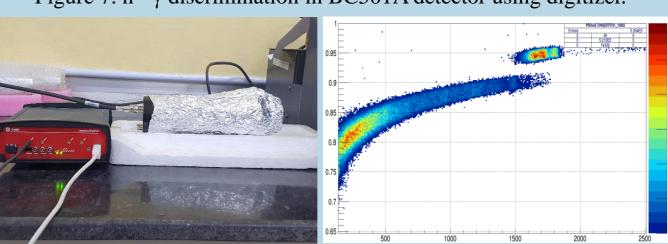
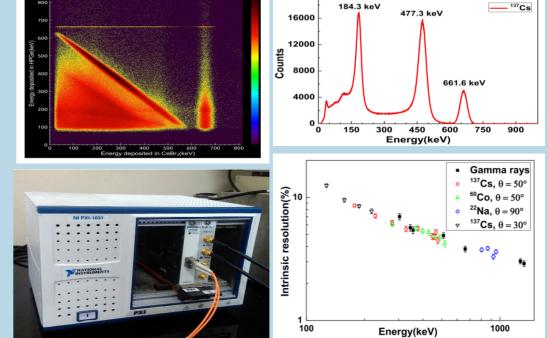



Figure 8. $\alpha - \gamma$ discrimination for internal activity in LaBr₃:Ce using digitizer.

Compton Coincidence Technique (CCT)

- CCT is used to measure response of monoenergetic Compton electrons generated inside scintillators.
- CCT is based on registering coincident signals from scattering of γ -rays inside the test detector(CeBr₃) followed by absorption of the scattered γ -ray in the reference detector(HPGe).
- PIXIE-4 multichannel digital gamma processor was used for measurement of Compton electrons
- Intrinsic energy resolution arises mostly due to the scattering of electrons inside the scintillator.

References

- S. Agostinelli, et al., NIM A, 506 (2003) 250.
 - Measurement and Detection of Radiation, 4th ed. Tsoulfanidis, Landsberger: CRC Press, 2015.
- . H. S. Kim, et al., J. Radiat. Prot. Res. 42 (2017) 48.
- 4. V. Ranga et al., IEEE Transactions on Nuclear Science, 65 (2018) 616.

Gamma ray source

Acknowledgements

Authors would like to acknowledge the financial support provided by CSIR and MHRD.